Assignment 3

January 26, 2018

- 1. Let $X_1, ..., X_n \stackrel{iid}{\sim} U(\theta, \theta + 1)$. Show that the minimal sufficient statistic $(X_{(1)}, X_{(n)})$ observed in the class is not complete.
- 2. Let $X_1, ..., X_n \stackrel{iid}{\sim} N(\theta, a\theta^2)$ where a is a known constant and $\theta > 0$. Show that the statistic (\bar{X}, S^2) is a sufficient statistic for θ , but the family of distributions is not complete.
- 3. Let X takes values 0, 1, 2 with probabilities p, 3p, 4p. Determine if the family of distributions of X is complete.
- 4. Let $X_1, ..., X_n$ be a random sample from the pdf $f_{\mu}(x) = e^{-(x-\mu)}, -\infty < \mu < x < \infty$. Show that $X_{(1)}$ and S^2 are independent.
- 5. Let $X_1, ..., X_n \stackrel{iid}{\sim} Ber(p)$, and define the function $h(p) = P_p(\sum_{i=1}^n X_i > X_{n+1})$, the probability that the sum of first *n* observations exceeds (n+1) th observation.
 - (a) Show that

$$T(X_1, ..., X_{n+1}) = \begin{cases} 1 \text{ if } \sum_{i=1}^n X_i > X_{n+1} \\ 0 \text{ o.w.} \end{cases}$$

is an unbiased estimator of h(p).

(b) Find the best unbiased estimator for h(p).

- 6. $X_1, ..., X_n \stackrel{iid}{\sim} Gamma(\alpha, \beta)$, with α known. Find the best unbiased estimator of $1/\beta$.
- 7. Suppose that $X_1, ..., X_n \stackrel{iid}{\sim} Ber(p)$.
 - (a) Show that variance of \bar{X} attains Cramer-Rao lower bound.
 - (b) Find the best unbiased estimator of p^8 when $\sum_{i=1}^n X_i > 8$.
- 8. $X_1, ..., X_n$ be a random sample from a population with p.d.f. $f_{\theta}(x) = \frac{1}{2\theta}$ for $-\theta < x < \theta$, $\theta > 0$. Find the best unbiased estimator of θ .