Assignment 2

January 19, 2018

- 1. If $X_1, ..., X_n \stackrel{iid}{\sim} Beta(1, \beta)$, find a value of ν so that $n^{\nu}(1 X_{(n)})$ converges in distribution.
- 2. Let $X_1, ..., X_n \stackrel{iid}{\sim} Bernoulli(p)$ and $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 - Show that $\sqrt{n}(Y_n p) \to N(0, p(1 p))$ in distribution.
 - Show that for $p \neq 0.5$, the estimate of variance $Y_n(1 Y_n)$ satisfies $\sqrt{n}[Y_n(1 Y_n) p(1 p)] \rightarrow N(0, p(1 p)(1 2p)^2)$ in distribution.
 - Show that for p = 0.5, $n[Y_n(1 Y_n) \frac{1}{4}] \rightarrow -\frac{1}{4}\chi_1^2$ in distribution.
- 3. Let $X_1, ..., X_n$ be independent random random variables with densities

$$f_{X_i,\theta}(x) = \begin{cases} e^{i\theta - x} & \text{if } x \ge i\theta \\ 0 & \text{if } x < i\theta \end{cases}$$

Prove that $T = min_i(X_i/i)$ is a sufficient statistic for θ .

4. Let $X_1, ..., X_n$ be a random sample from the pdf

$$f_{\mu,\sigma}(x) = \begin{cases} \frac{1}{\sigma} e^{-(x-\mu)/\sigma} & \text{if } \mu < x < \infty, \ 0 < \sigma < \infty \\ 0 & \text{o.w.} \end{cases}$$

Find a two-dimensional sufficient statistic for (μ, σ) .

5. $X_1, ..., X_n$ be independent random variables with pdfs

$$f_{X_{i},\theta}(x) = \begin{cases} \frac{1}{2i\theta} & \text{if } -i(\theta-1) < x < i(\theta+1) \\ & 0 & \text{o.w.} \end{cases}$$

where $\theta > 0$, find a two-dimensional sufficient statistic for θ .

- 6. Let $X_1, ..., X_n$ be a random sample from a $Gamma(\alpha, \beta)$ distribution. Find a two dimensional sufficient statistics for (α, β) .
- 7. For each of the following distributions let $X_1, ..., X_n$ be a random sample. Find a minimal sufficient statistic for θ .
 - $f_{\theta}(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\theta)^2/2}, -\infty < x < \infty, -\infty < \theta < \infty.$
 - $f_{\theta}(x) = e^{-(x-\theta)}, \ \theta < x < \infty, \ -\infty < \theta < \infty.$
 - $f_{\theta}(x) = \frac{1}{\pi[1+(x-\theta)^2]}, -\infty < x < \infty, -\infty < \theta < \infty.$
- 8. Suppose X_1 , X_2 are iid observations from the pdf $f_{\alpha}(x) = \alpha x^{\alpha-1} e^{-x^{\alpha}}$, x > 0, $\alpha > 0$. Show that $\log(X_1) / \log(X_2)$ is an ancillary statistic.
- 9. Let $X_1, ..., X_n$ be a random sample from a location family. Prove that $M \bar{X}$ is an ancillary statistic where M is the sample median and \bar{X} is the sample mean.